Nondestructive testing of welded pipe fittings: NDT

Nondestructive testing of welded pipe fittings: NDT

Definition of NDT for welded pipe fittings: NDT refers to a testing method for materials or workpieces that does not damage or affect their future performance or use.

NDT can find defects in the interior and surface of materials or workpieces, measure the geometric features and dimensions of workpieces, and determine the internal composition, structure, physical properties and state of materials or workpieces.

NDT can be applied to product design, material selection, processing and manufacturing, finished product inspection, in-service inspection (maintenance), etc. It can play an optimal role between quality control and cost reduction. NDT also helps to ensure the safe operation and/or effective use of products.

Types of nondestructive testing methods NDT contains many effective methods.

According to the physical principle or different detection objects and purposes, NDT can be roughly divided into the following methods:

A) radiation method: -(x-ray and gamma-ray radiographic testing); -Radiographic testing; -Computed tomographic testing; —— neutron radiographic testing.

B) acoustic method: -ultrasonic testing; -acoustic emission testing; -electromagnetic acoustic testing.

C) electromagnetic method: -eddy current testing; -flux leakage testing.

D) surface method: -magnetic particle testing; -(liquid) penetrant testing; -visual testing.

E) leakage method: -leak testing.

F) infrared method: -infrared thermal imaging testing.

Conventional NDT methods are widely used and mature NDT methods at present, which are: radiographic testing (RT), ultrasonic testing (UT), eddy current testing (ET), magnetic particle testing (MT) and penetrant testing (PT).

Some NDT methods will produce or incidentally produce substances such as radioactive radiation, electromagnetic radiation, ultraviolet radiation, toxic materials, flammable or volatile materials, dust, etc., which will harm human body to varying degrees. Therefore, when applying NDT, necessary protection and monitoring should be carried out according to the types of harmful substances that may be produced, and necessary labor protection measures should be taken for relevant NDT personnel.

Each NDT method has its own capabilities and limitations, and the detection probability of defects by each method is neither 100% nor completely the same. For example, radiographic testing and ultrasonic testing, the testing results of the same object are not completely consistent.

In the conventional NDT method, radiographic testing and ultrasonic testing are mainly used to detect the defects inside the tested object; Eddy current testing and magnetic particle testing are used to detect defects on the surface and near surface of the tested object; Penetration testing is only used to detect the defects of the surface opening of the tested object.

Radiographic inspection is suitable for detecting volumetric defects in the inspected object, such as porosity, slag inclusion, shrinkage cavity, porosity, etc. Ultrasonic testing is suitable for detecting area defects in the tested object, such as cracks, white spots, delamination and incomplete fusion in welds.

Radiographic inspection is often used to inspect metal castings and welds, and ultrasonic inspection is often used to inspect metal forgings, profiles and welds. Ultrasonic inspection is usually superior to radiographic inspection in detecting defects in welds.

Radiographic inspection (RT)

Scope of competence:

A) defects such as incomplete penetration, porosity and slag inclusion in the weld can be detected;

B) defects such as shrinkage cavity, slag inclusion, porosity, looseness and hot cracking in castings can be detected;

C) can determine the plane projection position and size of the detected defects, as well as the types of defects.

Note: The transillumination thickness of radiographic inspection is mainly determined by ray energy. For steel materials, the transmission thickness of 400 kV X-ray can reach about 85 mm, cobalt 60 gamma ray can reach about 200 mm, and the transmission thickness of 9 MeV high-energy X-ray can reach about 400 mm..

Limitations:

A) it is difficult to detect the defects in forgings and profiles;

B) it is difficult to detect the fine cracks and incomplete fusion in the weld.

Ultrasonic testing (UT)

Scope of competence:

A) defects such as cracks, white spots, delamination, large or dense slag inclusion in forgings can be detected;

Note 1: Internal defects or defects parallel to the surface can be detected by direct technology. For steel materials, the maximum effective detection depth can reach about 1 m;

Note 2: Non-parallel defects or surface defects can be detected by oblique or surface wave technology.

B) It can detect defects such as cracks, incomplete penetration, incomplete fusion, slag inclusion, porosity, etc. existing in the weld;

Note: Oblique shooting technique is usually used. If 2.5 MHz ultrasonic wave is used to detect steel weld, the maximum effective detection depth is about 200 mm

C) defects such as cracks, folds, delamination and flaky slag inclusion in profiles (including plates, pipes, bars and other profiles) can be detected;

Note: Generally, liquid immersion technology is used, and focusing oblique shooting technology can also be used for pipes or bars.

D) It can detect the defects such as hot crack, cold crack, looseness, slag inclusion, shrinkage cavity, etc. in castings (such as steel castings with simple shape, flat surface or machined and repaired ductile iron);

E) the coordinate position and relative size of the detected defects can be determined, but it is difficult to determine the types of defects.

Limitations:

A) it is difficult to detect defects in coarse-grained materials (such as castings and welds of austenitic steel); B) It is difficult to detect defects in workpieces with complex shapes or rough surfaces.

Eddy current testing (ET)

Scope of competence:

A) it can detect defects such as cracks, folds, pits, inclusions and porosity on the surface and/or near the surface of conductive materials (including ferromagnetic and non-ferromagnetic metal materials, graphite, etc.);

B) The coordinate position and relative size of the detected defects can be determined, but it is difficult to determine the types of defects.

Limitations:

A) not applicable to non-conductive materials;

B) the internal defects existing in the far surface of the conductive material cannot be detected;

C) it is difficult to detect the defects on or near the surface of a workpiece with complex shape.

Magnetic particle inspection (MT)

Scope of competence:

A) it can detect the defects such as cracks, folds, interlayers, inclusions and air holes on the surface and/or near the surface of ferromagnetic materials (including forgings, castings, welds, profiles and other workpieces);

B) It can determine the position, size and shape of the detected defect on the surface of the inspected object, but it is difficult to determine the depth of the defect.

Limitations:

A) it is not suitable for non-ferromagnetic materials, such as austenitic steel, copper, aluminum and other materials;

B) internal defects existing in the far surface of ferromagnetic materials cannot be detected.

Penetration testing (PT)

Scope of competence:

A) defects such as open cracks, folds, looseness, pinholes and the like on the surfaces of metal materials and dense nonmetal materials can be detected;

B) It can determine the position, size and shape of the detected defect on the surface of the inspected object, but it is difficult to determine the depth of the defect.

Limitations:

A) it is not suitable for loose porous materials;

B) defects existing in the material interior and/or near the surface without opening can not be detected

Decho is a professional supplier on  pipe fittings , if you have any request , pls donot hesitate to contact us by email [email protected]

Tube bending production process

Tube bending production process

 At present, there are basically two kinds of pipe bending production processes in China:

The first type: small-diameter pipeline, the general outer diameter specification is ≤89mm, and cold bending is usually adopted, which is carried out by manual or numerical control pipe bending machine. After bending, annealing heat treatment is needed to eliminate the deformation stress inside the bent pipe.

Type 2: large diameter and high pressure pipelines usually have an outer diameter of ≥114mm and are usually hot bent. Medium-frequency heating is used to heat the pipeline, and mechanical or hydraulic mechanism is used to apply external force to bend the pipeline.

Comparison of two processes:

Cold bending does not change the organizational structure of steel pipe, and keeps the original mechanical properties of steel pipe well, but because of its great deformation resistance, it is not suitable for bending of large diameter and thick wall pipeline; At the same time, cold bending will produce great stress concentration, so it is necessary to anneal the pipeline.

Hot bending needs to heat the pipeline, which has certain influence on the mechanical properties and service life of the pipeline itself. Usually, in order to better ensure the service performance of elbow, the elbow should be heat treated after hot bending if necessary.

Decho is a professional supplier on bending pipes , if you have any request , pls donot hesitate to contact us by email [email protected]

How are qualified pipe fittings produced?

How are qualified pipe fittings produced?

If the finished pipe fittings are viewed from the outside, it is difficult to distinguish between good and bad quality, which is only known during the use process. Engineering quality pays attention to safety first, and once an accident happens, it will cause irreparable losses.

So how are high-quality and qualified pipe fittings produced? Mainly consider the following links:

1. The raw materials of pipe fittings are base materials: in order to manufacture qualified pipe fittings, qualified raw materials must be selected. That is to say, the steel pipes, steel plates and billets used for manufacturing pipe fittings must be products that meet the requirements of the corresponding national standards after inspection. In practice, in order to reduce production costs, bad manufacturers use pipes or other raw materials from unknown sources, some purchase engineering surplus materials, some purchase defective pipes and test machine products processed by steel mills, some purchase retired oil and gas transmission steel pipes that have expired, and some use low-grade steel instead of high-demand steel, such as seamless steel pipes of GB/T 8162 instead of seamless steel pipes of GB/T8163, and even welded steel pipes with treated welds instead of seamless steel pipes. All these have brought endless hidden dangers to the purchaser.

2. Die for producing pipe fittings: The pressing, extruding and forging of dies are indispensable in the forming process of pipe fittings, so factories are required to inspect various manufacturing dies frequently to minimize the defects such as strain and scratch in the forming process of pipe fittings.

3. Heat treatment of pipe fittings: The main functions of heat treatment are to relieve stress, reduce hardness, refine grains and improve structure and performance. For stainless steel, it means austenitizing. Especially cold-formed pipe fittings, all must be heat treated. However, small coal furnaces are still used for heat treatment in very small factories, and the work depends entirely on workers’ experience, and the furnace temperature is unstable and uneven, which cannot guarantee the heat treatment effect. 4. NDE for pipe fittings: National and international standards have corresponding provisions on NDE for formed pipe fittings. For example, the cold extruded tee must be 100% magnetic particle inspected, and the weld must be 100% radiographic inspected. However, because some factories do not have the testing power, are lucky or overconfident, they omit the essential nondestructive testing link, and do not find the major surface or internal defects of the products, which foreshadows the hidden dangers.

5. Preparation of pipe ends: Most pipe fittings will be welded with pipes or other pipe fittings at the project site. This requires that the roundness, thickness and groove of the pipe end must be excellent, otherwise it will bring difficulties to the welding in the project site, and then affect the welding quality of the project. Some people think that the wall thickness of our pipe fittings is not worse than that required by customers, so there should be no problem. As everyone knows, too thick end thickness will also make welding impossible on site.

Decho is a professional supplier on pipe fittings , if you have any request , pls donot hesitate to contact us by email [email protected]

Principle and classification of check valves

Principle and classification of check valves

 

Check valve The function of this type of valve is to allow the medium to flow in one direction only, and to prevent the opposite direction. Usually, this kind of valve works automatically, and the valve flap opens under the pressure of fluid flowing in one direction; When the fluid flows in the opposite direction, the fluid pressure and the self-overlapping disc of the disc act on the valve seat, thus cutting off the flow.

Structural classification

According to the structure, it can be divided into three types: lift check valve, swing check valve and butterfly check valve:

1. Lift check valves are divided into vertical and horizontal types.

2. Swing check valves are divided into three types: single-flap, double-flap and multi-flap.

3. Butterfly check valve is straight-through.

The above check valves can be divided into four types in connection form: threaded connection, flange connection, welding connection and butt clamp connection.

Material classification

1. Cast iron check valve

2. Brass check valve

3. Stainless steel check valve

4. Carbon steel check valve

5. Forged steel

check valve functional classification

1.DRVZ silent check valve Stainless steel check valve Stainless steel check valve

2.DRVG silent check valve

3.NRVR silent check valve

4.SFCV rubber flap check valve

5.DDCV double disc check valve

 

Decho is a professional supplier on check valves, if you have any request , pls donot hesitate to contact us by email [email protected]